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ABSTRACT 

In recent years, there has been a growing movement in the world toward the realization of a carbon neutral 
society as a measure against global warming. There are also a number of efforts in the construction industry. 
Types of cement with a high percentage of admixture replacement are becoming widely used to reduce CO2 
emissions during cement production. In addition, technology that uses the carbonation reaction of concrete 
to adsorb CO2 into concrete is attracting attention. At higher W/C, CO2 penetrates deeper into the concrete 
because of the larger pores, resulting in a greater depth of carbonation. In this study, we examined the effect 
of different mix proportions on the amount of CO2 adsorption. Cement pastes with different W/C and blast 
furnace slag fine powder substitution rates were carbonated in a high concentration CO2 chamber and 
measured the amount of adsorption, considering the ease of CO2 penetration. As a result, a tendency was 
observed that the CO2 penetrates more deeply, and the amount of CO2 adsorption is higher in mix proportion 
with high blast furnace slag fine powder content or high W/C. Also, it shows a trend that the potential to 
adsorb CO2 is greater as the CaO percentage that the sample has is increased. 

KEYWORDS: CO2 adsorption, ground granulated blast furnace slag, carbonation reaction, CO2 
penetration 

1. Introduction 

In recent years, rising seas, droughts, floods, and extreme weather conditions caused by global warming 
have occurred in the world. Therefore, as a measure against global warming, there is a growing movement 
toward the realization of a carbon-neutral society, in which the sum of emissions and absorption of the 
greenhouse gases that cause the problem is substantially zero. There are also a number of initiatives being 
undertaken in the construction industry. It is a problem of CO2 emissions during cement production. In an 
effort to reduce CO2 emissions from the cement production process, cement with high replacement of 
admixtures such as ground granulated blast furnace slag or fly ash is being used. In addition, there has been 
a growing interest in technologies that use the carbonation reaction of concrete in order to absorb CO2 into 
the concrete. Considering the carbonation reaction, even if the concrete is carbonated in the same period of 
time and in the same environmental place, the ease of CO2 penetration is different depending on the types 
of cement and W/C. Therefore, the carbonation depth is different. CO2 absorption cannot be determined by 
only the carbonation depth because different types of W/C and cement absorb different amounts of CO2 

when carbonated. 
 In this study, we prepared specimens of cement paste with different types of cement and W/C. Accelerated 
carbonation was applied. The sample was divided, and the CO2 absorption was calculated for each part of 
the sample. This allowed us to study the quantification of CO2 absorption considering the ease of CO2 
penetration and the CO2 absorption potential of different types of cement. 
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2. Materials and outline of experiments 

2.1 Materials and mix proportions 

In this study, cement paste samples were used to eliminate the influence of aggregate as a fundamental 
study. The mix proportion is shown in Table 1. The experiment was conducted with four mix proportions, 
different types of cement and different W/C. As cement, Ordinary Portland Cement (OPC) and Blast 
Furnace Cement, which is made by replacing ground granulated blast-furnace slag (GGBS) with OPC, were 
used in the test. The blast furnace slag cement was set as BB with 50% replacement of GGBS and BC with 
70% replacement of GGBS. Table 2 also shows the chemical composition of OPC and GGBS. The amount 
of CaO in the cement was changed by changing the percentage of GGBS. 
 

Table 1 Mix proportion of cement paste 
No. Type of cement W/C (%) Unit weight (kg/m3) 

W OPC GGBS 
N30 OPC 30 487 1622 - 
N50 OPC 50 612 1225 - 

BB50 BB 50 602 602 602 
BC70 BC 70 675 289 675 

 
Table 2 Chemical Compositions of OPC and GGBS 

 Chemical composition (%) 
SiO2 Al2O3 FeO Fe2O3 CaO MgO TiO2 MnO SO3 Na2O K2O P2O5 

OPC 20.19 5.18 - 2.78 65.01 1.18 0.25 0.15 2.10 0.31 0.36 0.16 
GGBS 33.27 13.94 0.31 - 40.00 5.47 0.57 0.15 1.99 0.26 0.26 0.02 

 
2.2 Calculation of CO2 absorption 

Figure 1 shows the outline of the experiment. Rectangular specimens of 40×40×160mm were casted, 
demolded the day after placing, and sealing cured for 7 days. After curing was completed, the sides were 
sealed with aluminium tape and one 40×40mm surface was released. The specimens were placed in an 
accelerated carbonation chamber (20°C, 60% RH, 5% CO2 concentration) for 28 days of accelerated 
carbonation. After carbonation, they were sliced at 10 mm intervals from the release surface and treated 
with acetone to stop the hydration reaction. The measurement of TG-DTA was performed under N2 flow 
environment with a temperature increase rate of 20°C/min from room temperature to 1000°C. The CaCO3 
content ratio was calculated by using the inflection point of the peak in the DTA curve to estimate the 
amount of decarbonation. Amount of CO2 absorption was calculated using difference in CaCO3 content 
ratio between carbonated and uncarbonated. In addition, specimens made under the same conditions were 
saturated with water under vacuum conditions, and the saturated mass and mass in water were measured. 
After that, the specimens were placed at 40°C, 30% RH until the mass loss became constant, and then the 
dry mass was measured. Porosity was calculated by Archimedes' method using saturated mass, mass in 
water, and dry mass. 
 

Figure 1 Outline of the experiment 
 

The amount of CO2 absorption per sliced 40×40×10mm sample which volume is 16 cm3, with porosity 
taken into account, was calculated using Equation (1). 
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CO2 absorption[g]= density#g/cm3$×Volume(16cm3)	×	(1-Porosity)	×	A[%]	×	
44
100

  																								 (1) 
where, A: difference in CaCO3 content ratio between carbonated and uncarbonated 

3. Results and discussion 

3.1 CO2 absorption as hardened cement 

Figure 2 shows the amount of CO2 absorption in each mix proportion for each sliced sample. The horizontal 
shows the distance from the surface in contact with the CO2. N30 and N50 were not completely carbonated 
even at 10 mm from the surface. On the other hand, carbonation reached 20 mm in BB50 and 40 mm in 
BC70. It is clear that the depth of CO2 absorption is different depending on the types of cement and W/C 
as well as the carbonation depth. It was found that in the order of BC70, BB50, N50, and N30, CO2 was 
absorbed more deeply into the specimen. In BC70, CO2 absorption from 0~10 mm, 10~20 mm, and 20~30 
mm was about the same in each layer.  

 
Figure 2 The amount of CO2 absorption 

  
Figure 3 shows the amount of CO2 absorption by the total of 40×40×160mm specimen. CO2 absorption was 
high in the order of BC70, BB50, N50, and N30. It was found that CO2 absorption is greater in total as it 
absorbs CO2 to a more internal level by carbonating at 5% CO2 concentration for 28 days. 

Figure 3 Amount of CO2 absorption by the total of 40×40×160mm specimen 

0.0

0.5

1.0

1.5

2.0

A
m

ou
nt

 o
f C

O
2

ab
so

rp
tio

n 
pe

r a
 la

ye
r (

g)

Depth from surface (mm)
0           10          20         30          40   50

N50

0.0

0.5

1.0

1.5

2.0

A
m

ou
nt

 o
f C

O
2

ab
so

rp
tio

n 
pe

r a
 la

ye
r (

g)

Depth from surface (mm)

BB50

0           10          20         30          40   50
0.0

0.5

1.0

1.5

2.0

A
m

ou
nt

 o
f C

O
2

ab
so

rp
tio

n 
pe

r a
 la

ye
r (

g)

Depth from surface (mm)

BC70

0           10          20         30          40   50

0

1

2

3

4

5

N30 N50 BB50 BC70

A
m

ou
nt

 o
f C

O
2

ab
so

rp
tio

n 
pe

r a
 sp

ec
im

es
 

(g
)

30~40mm
20~30mm
10~20mm
0~10mm

0.0

0.5

1.0

1.5

2.0

A
m

ou
nt

 o
f C

O
2

ab
so

rp
tio

n 
pe

r a
 la

ye
r (

g)

Depth from surface (mm)
0          10          20           30            40      50

N30

543



3.2 CO2 absorption potential of each mix proportion 

We focused on the amount of CO2 absorbed per layer shown in Figure 3. It can be seen that the amount of 
CO2 absorption in one layer is different depending on the mix proportion. Though the largest total 
absorption was BC70, amount of CO2 absorption of the first layer was smaller in BC70 than in BB50.In 
addition, the CO2 absorption of N30 and N50 did not reach the second layer, and the first layer is not 
considered to be fully carbonated either, but the CO2 absorption of the first layer was equal to or higher 
than that of B70. Therefore, we considered there was potential for the amount of CO2 that could be absorbed 
by each mix proportion.  
CO2 absorption was measured using powder samples in which the effect of porosity was eliminated so that 
carbonation proceeds in the same regardless of mix proportion. Samples of 48×40×2 mm were made and 
sealing cured for 7 days. And hydration was stopped and the specimens were granulated. Based on previous 
studies, accelerated carbonation was performed for 7 days after adding 70% water to the sample mass to 
eliminate the effect of sample drying. After carbonation, CO2 absorption was measured by TG-DTA.  
The results of the CO2 absorption per 1m3 of cement paste are shown in Figure 4 Amount of CO2 absorption 
was high in the order of N30, N50, BB50, and BC70 and smaller for higher GGBS content. Figure 5 shows 
the relationship between the amount of CaO content per 1m3 of cement and the amount of CO2 absorption. 
The larger the CaO content, the greater the CO2 absorption potential. BC70, which has a smaller CO2 
absorption potential, has a smaller CaO content, indicating that the potential for CO2 absorption is affected 
by the CaO content. It is thought that this difference in potential affected the amount of CO2 absorption in 
each layer. 

 
4. Conclusions 

1) By carbonating the hardened cement pastes and measuring the amount of CO2 absorbed by separating 
it at each distance from the surface, it was found that the deeper the CO2 absorption, the more CO2 was 
absorbed. 

2) Carbonation with powder samples without considering the ease of CO2 absorption, such as porosity, 
is thought to provide the potential for CO2 absorption of cement paste, and the higher the amount of 
CaO in the mix proportion, the greater the potential for CO2 absorption.  
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