Effect of Mix Proportion as W/C and Amount of GGBS Contents on CO₂ Adsorption

R. Yahiro^{1*}, M. Kojima², and T. Iyoda³

 ¹ Shibaura Institute of Technology, Tokyo, Japan Email: mh22020@shibaura-it.ac.jp
² Takenaka Corp., Chiba, Japan Email: kojima.masarou@takenaka.co.jp
³ Shibaura Institute of Technology, Tokyo, Japan Email: iyoda@shibauta-it.ac.jp

ABSTRACT

In recent years, there has been a growing movement in the world toward the realization of a carbon neutral society as a measure against global warming. There are also a number of efforts in the construction industry. Types of cement with a high percentage of admixture replacement are becoming widely used to reduce CO_2 emissions during cement production. In addition, technology that uses the carbonation reaction of concrete to adsorb CO_2 into concrete is attracting attention. At higher W/C, CO_2 penetrates deeper into the concrete because of the larger pores, resulting in a greater depth of carbonation. In this study, we examined the effect of different mix proportions on the amount of CO_2 adsorption. Cement pastes with different W/C and blast furnace slag fine powder substitution rates were carbonated in a high concentration CO_2 chamber and measured the amount of adsorption, considering the ease of CO_2 penetration. As a result, a tendency was observed that the CO_2 penetrates more deeply, and the amount of CO_2 adsorption is higher in mix proportion with high blast furnace slag fine powder content or high W/C. Also, it shows a trend that the potential to adsorb CO_2 is greater as the CaO percentage that the sample has is increased.

KEYWORDS: *CO*₂ adsorption, ground granulated blast furnace slag, carbonation reaction, CO₂ penetration

1. Introduction

In recent years, rising seas, droughts, floods, and extreme weather conditions caused by global warming have occurred in the world. Therefore, as a measure against global warming, there is a growing movement toward the realization of a carbon-neutral society, in which the sum of emissions and absorption of the greenhouse gases that cause the problem is substantially zero. There are also a number of initiatives being undertaken in the construction industry. It is a problem of CO_2 emissions during cement production. In an effort to reduce CO_2 emissions from the cement production process, cement with high replacement of admixtures such as ground granulated blast furnace slag or fly ash is being used. In addition, there has been a growing interest in technologies that use the carbonation reaction of concrete in order to absorb CO_2 into the concrete. Considering the carbonation reaction, even if the concrete is carbonated in the same period of time and in the same environmental place, the ease of CO_2 penetration is different depending on the types of cement and W/C. Therefore, the carbonation depth is different. CO_2 absorption cannot be determined by only the carbonation depth because different types of W/C and cement absorb different amounts of CO_2 when carbonated.

In this study, we prepared specimens of cement paste with different types of cement and W/C. Accelerated carbonation was applied. The sample was divided, and the CO_2 absorption was calculated for each part of the sample. This allowed us to study the quantification of CO_2 absorption considering the ease of CO_2 penetration and the CO_2 absorption potential of different types of cement.

2. Materials and outline of experiments

2.1 Materials and mix proportions

In this study, cement paste samples were used to eliminate the influence of aggregate as a fundamental study. The mix proportion is shown in Table 1. The experiment was conducted with four mix proportions, different types of cement and different W/C. As cement, Ordinary Portland Cement (OPC) and Blast Furnace Cement, which is made by replacing ground granulated blast-furnace slag (GGBS) with OPC, were used in the test. The blast furnace slag cement was set as BB with 50% replacement of GGBS and BC with 70% replacement of GGBS. Table 2 also shows the chemical composition of OPC and GGBS. The amount of CaO in the cement was changed by changing the percentage of GGBS.

No.	Type of cement	W/C (%)	Unit weight (kg/m ³)				
INU.	Type of cement		W	OPC	GGBS		
N30	OPC	30	487	1622	-		
N50	OPC	50	612	1225	-		
BB50	BB	50	602	602	602		
BC70	BC	70	675	289	675		

Table 1 Mix proportion of cement paste	Table 1	Mix pro	portion of	cement	paste
--	---------	---------	------------	--------	-------

Table 2 Chemical Compositions of OPC and GGBS												
	Chemical composition (%)											
	SiO ₂	Al_2O_3	FeO	Fe ₂ O ₃	CaO	MgO	TiO ₂	MnO	SO_3	Na ₂ O	K ₂ O	P_2O_5
OPC	20.19	5.18	-	2.78	65.01	1.18	0.25	0.15	2.10	0.31	0.36	0.16
GGBS	33.27	13.94	0.31	-	40.00	5.47	0.57	0.15	1.99	0.26	0.26	0.02

CODC --- LCCDC

2.2 Calculation of CO₂ absorption

Figure 1 shows the outline of the experiment. Rectangular specimens of $40 \times 40 \times 160$ mm were casted, demolded the day after placing, and sealing cured for 7 days. After curing was completed, the sides were sealed with aluminium tape and one 40×40 mm surface was released. The specimens were placed in an accelerated carbonation chamber (20° C, 60% RH, 5% CO₂ concentration) for 28 days of accelerated carbonation. After carbonation, they were sliced at 10 mm intervals from the release surface and treated with acetone to stop the hydration reaction. The measurement of TG-DTA was performed under N₂ flow environment with a temperature increase rate of 20° C/min from room temperature to 1000° C. The CaCO₃ content ratio was calculated by using the inflection point of the peak in the DTA curve to estimate the amount of decarbonation. Amount of CO₂ absorption was calculated using difference in CaCO₃ content ratio between carbonated and uncarbonated. In addition, specimens made under the same conditions were saturated with water under vacuum conditions, and the saturated mass and mass in water were measured. After that, the specimens were placed at 40° C, 30% RH until the mass loss became constant, and then the dry mass was measured. Porosity was calculated by Archimedes' method using saturated mass, mass in water, and dry mass.

Figure 1 Outline of the experiment

The amount of CO₂ absorption per sliced $40 \times 40 \times 10$ mm sample which volume is 16 cm³, with porosity taken into account, was calculated using Equation (1).

$$CO_2 \text{ absorption}[g] = density[g/cm^3] \times Volume(16cm^3) \times (1-Porosity) \times A[\%] \times \frac{44}{100}$$
(1)
where, A: difference in CaCO₃ content ratio between carbonated and uncarbonated

3. Results and discussion

3.1 CO₂ absorption as hardened cement

Figure 2 shows the amount of CO_2 absorption in each mix proportion for each sliced sample. The horizontal shows the distance from the surface in contact with the CO_2 . N30 and N50 were not completely carbonated even at 10 mm from the surface. On the other hand, carbonation reached 20 mm in BB50 and 40 mm in BC70. It is clear that the depth of CO_2 absorption is different depending on the types of cement and W/C as well as the carbonation depth. It was found that in the order of BC70, BB50, N50, and N30, CO_2 was absorbed more deeply into the specimen. In BC70, CO_2 absorption from 0~10 mm, 10~20 mm, and 20~30 mm was about the same in each layer.

Figure 3 shows the amount of CO_2 absorption by the total of $40 \times 40 \times 160$ mm specimen. CO_2 absorption was high in the order of BC70, BB50, N50, and N30. It was found that CO_2 absorption is greater in total as it absorbs CO_2 to a more internal level by carbonating at 5% CO_2 concentration for 28 days.

Figure 3 Amount of CO₂ absorption by the total of 40×40×160mm specimen

3.2 CO₂ absorption potential of each mix proportion

We focused on the amount of CO_2 absorbed per layer shown in Figure 3. It can be seen that the amount of CO_2 absorption in one layer is different depending on the mix proportion. Though the largest total absorption was BC70, amount of CO_2 absorption of the first layer was smaller in BC70 than in BB50.In addition, the CO_2 absorption of N30 and N50 did not reach the second layer, and the first layer is not considered to be fully carbonated either, but the CO_2 absorption of the first layer was equal to or higher than that of B70. Therefore, we considered there was potential for the amount of CO_2 that could be absorbed by each mix proportion.

 CO_2 absorption was measured using powder samples in which the effect of porosity was eliminated so that carbonation proceeds in the same regardless of mix proportion. Samples of $48 \times 40 \times 2$ mm were made and sealing cured for 7 days. And hydration was stopped and the specimens were granulated. Based on previous studies, accelerated carbonation was performed for 7 days after adding 70% water to the sample mass to eliminate the effect of sample drying. After carbonation, CO_2 absorption was measured by TG-DTA.

The results of the CO₂ absorption per $1m^3$ of cement paste are shown in Figure 4 Amount of CO₂ absorption was high in the order of N30, N50, BB50, and BC70 and smaller for higher GGBS content. Figure 5 shows the relationship between the amount of CaO content per $1m^3$ of cement and the amount of CO₂ absorption. The larger the CaO content, the greater the CO₂ absorption potential. BC70, which has a smaller CO₂ absorption potential, has a smaller CaO content, indicating that the potential for CO₂ absorption is affected by the CaO content. It is thought that this difference in potential affected the amount of CO₂ absorption in each layer.

4. Conclusions

- 1) By carbonating the hardened cement pastes and measuring the amount of CO₂ absorbed by separating it at each distance from the surface, it was found that the deeper the CO₂ absorption, the more CO₂ was absorbed.
- 2) Carbonation with powder samples without considering the ease of CO_2 absorption, such as porosity, is thought to provide the potential for CO_2 absorption of cement paste, and the higher the amount of CaO in the mix proportion, the greater the potential for CO_2 absorption.

Acknowledgements

This paper is based on results of "Development of Materials, Manufacturing Methods and Quality Control System on Innovative Carbon Negative Concrete", JPNP21014, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

References

- Iyoda, T., Ishikawa, E.and Ikeo, Y. (2023) "Experimental study on quantification of carbon dioxide adsorption by different cement types and mix proportions", *Eighth International Symposium on Life-Cycle Civil Engineering (IALCCE 2023)* (Printing)
- Kuroda, Y. and Kikuchi, T. (2009) "Uptake of Carbon Dioxide in the Demolished and Crushed Concrete", *Concrete Research and Technology*, Vol.20, No.1, :15-22