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ABSTRACT 

Cement that is main component of concrete is one of the highest CO2 emission materials, on the other 
hands, it can react with CO2 and absorb it after hydration. Therefore, it is one of the carbon neutral methods 
for concrete to reduce amount of cement, and adsorb more CO₂ than emission from manufacturing process. 
This study aims at setting CO₂ emission from concrete life cycle as net zero by carbonation and putting into 
practical application. And thus, we evaluated the relationship between CO2 balance, compressive strength 
and pore structure using different blast furnace slag’s replacement ratio and fineness powder. The result 
showed that the compressive strength of mortar which is high content of blast furnace slag was down by 
carbonation. In addition, maximum capability of CO2 absorption correlate with CaO content form using 
material, on the other hand, to use higher content of Portland cement made carbonation depth less. We also 
examined admixture combination to keep out compressive strength down by carbonation and get CO2 
balance using not only blast furnace slag but also particular admixture based γ-C2S which can react with 
CO2 and then it made compressive strength increased. The result showed that using γ-C2S with carbonation 
didn’t occur compressive strength down, whereas carbonation depth is less than without γ-C2S.  
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1. Introduction 

In recent years, it is pressing need to reduce emission of CO2 that is a factor in global warming, and all 
industries are required to make the transition to decarbonized society. In the Japanese construction industry, 
concrete using highly substituted cement admixtures such as ECM cement is being developed to reduce the 
use of clinker, which emits a large amount of CO2 during production. On the other hand, since the main 
component of concrete is hydrates with calcium like Ca(OH)2, it is possible to absorb a large amount of 
CO2 by carbonation. Therefore, combining those methods is expected to lead to CO2 balance. However, 
depending on the mix proportion of admixture, it is difficult to organize the CO2 balance simply by the 
substitution ratio because the amount of calcium that absorb CO2 decreases, and the carbonation rate is 
different. In addition, there is little knowledge about effects of carbonation on strength and porosity using 
admixtures. 
In this study, we focused on blast furnace slag fine powder (GGBS), which can be replaced with a large 
amount of cement. we evaluated the relationship between CO2 absorption, compressive strength and pore 
structure using different GGBS replacement ratio and fineness powder. We also examined admixture 
combination to keep out compressive strength down by carbonation and get CO2 balance using not only 
GGBS but also particular admixture based γ-C2S which can react with CO2 and then it made compressive 
strength increased. 
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2. Materials and Methods 

2.1 Materials and Mix Proportion of Mortar 

Table1 shows the mix proportion of mortar. In this study, 3 types of powder were mixed in accordance with 
each mix proportion. Ordinary Portland cement with 2% SO3 is replaced by GGBS which is added 
anhydrous gypsum as 4 % SO3 contained in GGBS. In addition, mix proportion using γ-C2S were added it 
20% as powder substitution. We use LEAF (Denka Co., Japan) as γ-C2S. The mix proportion was set at a 
constant water-cement ratio of 50% and powder: fine aggregate ratio was set at 1:3. We mixed using mortar 
mixer, and cast it into specimens of 40×40×160mm. 

 
2.2 Curing condition 

After casting the mortar, the specimens were demolded at the age of 2 days and were cured in 3 types of  
environment; carbonation (20℃, 60% RH, CO2 concentration was 5%), water curing (20℃, 60% RH), air  
curing (20℃, 60% RH, CO2 concentration was 0.05%) for 7, 28, and 56 days. 
 
2.3 Testing methods 

After curing, flexural strength and compressive strength test was carried out according to JIS R 5201. Also, 
carbonation depth was measured by spraying with a 1% solution of phenolphthalein at the broken cross-
section between flexural strength test and compressive strength test. In addition, we measured pore amount 
on BA, BB, and BC which age was 56 days, because they weren’t coloured all area by phenolphthalein 
sprayed. As a sample, we used one of the pieces after measuring carbonation depth, which were cut parallel 
to the cross section by wet cutter. CO2 absorption was also measured in some sample. 
 
2.3.1 Measuring amount of CO2 absorption 

The CO2 absorption was measured by differential thermos-gravimetric analysis (TG-DTA) date using 
carbonation area that didn’t colored by phenolphthalein. The age of all sample were 56 days. All of samples 
were granulated by hammer and preserved in acetone for 4 hours and after that dry by a vacuum desiccator 
to stop hydration. TG-DTA was performed from room temperature to 1000℃ at a heating rate of 20℃/min. 
under nitrogen. Figure1 shows how to calculate the amount of CO2 absorption. The decarbonation ratio was 
determined from the weight loss at 550 to 850℃ because the inflection point of the DTA curve wasn’t clear. 
And all so, the amount of CO2 absorption was calculated from the difference in the decarbonation ratio 
between before and after of carbonation. 
 
 
 

Table1 Mix Proportion of Mortar 

Symbol W/P 
[%] P:S 

GGBS Binder ratio [weight %] CO2 emission  
of binder 

[g/kg] 
Replacement  

  [%] 
fineness 
[cm2/g] OPC GGBS γ-C2S 

N 

50 1:3 

0 - 100 0 0 764 
BA 30 4000 70 30 0 543 
BB 50 50 50 0 395 

BC 70 3000, 4000, 
8000 30 70 0 247 

N･γ 0 - 80 - 20 643 
BA･γ 30 

4000 
56 24 20 466 

BB･γ 50 40 40 20 348 

BC･γ 70 3000, 4000, 
8000 24 56 20 230 
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2.3.2 Porosity test 

The samples were saturated with water by a vacuum desiccator. After measuring the saturated weight and 
the weight in water, the samples were left to dry at 40℃ until their weights became constant, and the weight 
in an absolutely dry state was then measured. Porosity was calculated by Archimedes method. 
 
3. Results and discussion 

3.1 Carbonation depth and amount of CO2 absorption 

Figure 2 shows the carbonation depth. Regardless of using γ-C2S or not, BB and BC weren’t colored all 
area by phenolphthalein sprayed at 28days. Also, BA weren’t colored all area at 56 days. Focusing on the 
effect of using γ-C2S when the all area were not carbonated, low GGBS replacement rates show that 
carbonation depth of using γ-C2S resulted deeper than without γ-C2S. On the other hand, high GGBS 
replacement rates show that carbonation depth of using γ-C2S resulted smaller than without γ-C2S. 
Figure 3 shows the relationship between the percentage of CaO in the binder and the amount of CO2 
absorption in carbonation area. The red dotted line is maximum capability of CO2 absorption that 
caluculated from the amount of CaO. The case of using GGBS show correlation, and the lower GGBS 
replacement rates is closer to the maximum. But N was out of line regardless of using γ-C2S or not. Therefor, 
the using well combination of admixtures not only reduce CO2 emissions, but also be able to made the high 
potential of CO2 absorption. Eventually, it will be expected to lead the CO2 balance. 

 
3.2 Carbonation and compressive strength 
 
Figure 4 shows the relationship between GGBS replacement ratio and compressive strength of GGBS with 
Blaine’s fineness of 4000 cm2/g at 56 days of age. The result without γ-C2S, the strength of N, BA, and BB 
increased in the order of water curing, carbonation, and air curing. But for BC with high GGBS replacement 
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ratio, carbonation resulted in lower strength development than the other curing conditions. On the other 
hand, the results of using γ-C2S, N, BA, and BB showed the highest strength development in carbonation, 
and the strength of BC was comparable to that in water curing. Figure 5 shows the results of BC using 
different fineness of GGBS. Using higher fineness GGBS resulted higher strength, but similar trends were 
observed in the difference of curing methods. 
 

 
3.3 Carbonation and pore structure 

Figure 6 shows the porosity of BC at 56 days. The case of without γ-C2S, the total porosity with carbonation 
was larger than with water curing. But using γ-C2S, it was had the opposite result. 
Figure 7 shows the moisture deviation rate in pore from water discharge condition to absolutely dry at 40℃. 
Regardless of using γ-C2S or not, the samples with carbonation showed faster rate of water deviation than 
water curing in the early time of drying. Mizuno et al. reported that concrete with GGBS has a complex 
pore structure, but carbonation of C-S-H caused pore coarsening and changing to continuous pore structure. 
We assume that BC with carbonation increased the speed of water deviation by changing to continuous 
pore structure. However, CaCO3 which produced by carbonation of γ-C2S filled in some of pore and also 
increased strength.  

 
4. Conclusions 

Mortars with high GGBS replacement with carbonation showed an increase in total porosity and also 
tendency for compressive strength to be less pronounced than water curing. However, the combination of 
the addition of γ-C2S and carbonation showed a trend toward improvement in both of them. 
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