旅客属性を考慮した列車乗降シミュレーションモデルの構築 ~東急田園都市線を対象に~

H07209 武井 千亜生 指導教員 岩倉 成志

1. はじめに

近年,都市鉄道において朝のラッシュ時における混 雑緩和を目指し、高頻度運行や相互直通運転等の施策 が行われてきた. これらの施策は輸送力増強に大きく 貢献したが、高頻度運行によってダイヤの余裕がなく、 乗降時分の増加が遅延発生に繋がり後続列車へ波及 していく問題が発生した.

この様な現状から本研究室では、混雑問題を解決す ることを目的とした乗降時分推定モデルの構築が進 められてきた. しかし従来のモデルでは、データ数が 少なく平均的な旅客行動を再現するものであり旅客 の属性についてまでは考慮されていなかった.

そこで, 本研究では, 乗降行動のデータ数を大幅に 増やし、旅客属性を考慮して列車乗降シミュレーショ ンモデルの精度の向上を図る.

2. 対象路線の実状

本研究では、東急田園都市線の長津田~渋谷区間を対 象とする. 11月15日~12月17日(平日)を対象に東 急田園都市線 HP に掲載された遅延証明書から遅延状 況を図1にまとめた.10分程度の遅延が頻発しており、 乗降時分の増大等による小さなタイムロスから発生す る遅延が慢性的に起こっていると言える.

3. 現地調査

モデルの構築にあたり、現地調査を行い田園都市線 の調査をした. 旅客の特徴としては乗車後すぐに車内 奥まで詰める旅客が多いこと、整列乗車が徹底して行 われていることが挙げられる. 以上の点については田 園都市線の旅客特性と判断し、モデル構築の参考とし た. 同様に、ながら乗車する旅客など後述する旅客属 性についても乗降に影響を与える要因の参考とした.

4. 乗車速度分析

乗降時分に影響する要素として旅客の乗車速度に着 目し分析を行った. 駅ホーム映像と車両応荷重データ の両データが揃った車両の 1 扉を分析対象とした. 分 析に用いたデータ及びサンプル数は表1に示す.

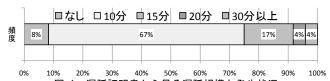


図 1 遅延証明書から見る遅延規模と発生状況 表 1 使用したデータ

現状分析可能 期間・データ量 サンブル数

提供	駅ホーム映像	混雑車両の乗降行動が分かる映像	11月15日~12月10日	50停車	
	データ	近 無 車 回 の 来 降 付 男 か 方 か る 吹 係 	7:00~10:00 (平日のみ)	(501人乗車)	
	車両応荷重	車両ごとの車内荷重を駅ごとに記録 混雑率を推定できる	11月15日~12月10日		
	ギータ		7:00~10:00 (平日のみ)	49編成	
	7-9		1日3編成(ピーク時と前後30分)		
地調査	加速度	加速度センサを持った状態で	12月6日, 7日, 9日	4停車	
	データ	列車に乗車した時の加速度	12/100, 70, 90	(4人乗車)	

表 2 映像データと加速度データ比較

駅名	日付	列車乗車時の速度(cm/s)		差
		映像分析	加速度センサ	<u>, </u>
たまプラーザ	12月6日	18.6	24.3	-5.7
池尻大橋	12月7日	118.0	99.8	18.2
三軒茶屋	12月7日	58.8	48.6	10.1
三軒茶屋	12月9日	9.2	11.5	-2.3

分析方法は、駅ホーム映像を 2 次元動画計測ソフト 「MOVE-tr/2D」を用いて乗車速度を計測する.加えて、 映像分析の精度確認として映像記録時間に加速度セン サを持った状態で分析対象列車に乗車することで,加 速度データを取得し乗車速度を算出し比較した.

加速度データについては歩行の波形と映像データか ら歩き出しと乗車が完了した範囲を探し、その平均を 乗車速度として映像データとの比較を行った. その結 果を表 2 に示す. 最大で約 18cm/s の差が出たが, 映像 分析と加速度計に似た傾向が見られたと判断し,映像 データから分析した乗降速度をデータとして利用する.

5. 列車乗降シミュレーションモデル構築

5-1. 列車乗降シミュレーションモデル

本研究では、列車乗降シミュレーションモデルを構 築し, 1 編成の車両のうち乗降完了が最も遅い扉 1 つを 再現することで乗降時分を表現する.

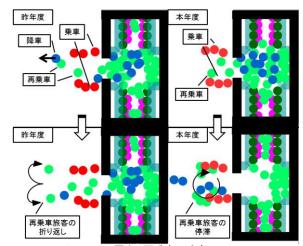
5-2. エージェント行動パターン

モデル内のエージェントの行動パターンは、乗車、 降車,通過を基本として個人空間の確保や,エージェ ント間の距離による乗降速度の変動、車内混雑率上昇 の際の押込みなどの動作を反映している.

今回, モデル改良の例として, 旅客の再乗車行動に ついて説明する. (図2参照) 左図が従来のモデルで右 図が改善モデルである. 図の左右ともに上下で連続し た図となっている。まず左図の再乗車を見ると、乗車 旅客の後方に回り込み並ぶのに対して, 右図のように ドア周辺で停滞するように変更した. この変更によっ て混雑時の降車のし難さを再現出来た. 他にも, 旅客 同士が固まって動かなくなる問題や、不自然に車内奥 までつめる行動などを改善した.

5-3. エージェント属性

映像分析する段階で旅客属性を確認し、属性分けを した. (表3参照) 属性は映像データから見た目で判断 出来ることを前提とし、分析から得られた乗車速度を 基に比較を行った. 図 3 には、男女と携帯電話を操作 しながらの旅客について乗車速度 20cm/s ごとの頻度 分布を示す. 男女については, 男性の最頻値が 20cm/s に対して女性が 10cm/s と乗車速度に差が見られた. 次 に携帯電話を操作しながらの乗降は、特化した点は見 当たらないが、携帯電話を操作した乗客の後では全体 的に乗車速度が下がる傾向が見られた. 以上のことか ら現時点では、旅客属性をモデルに組込めていないが、 属性によって差が表れる傾向をつかむことができた.


5-4. モデル再現性の検証

実績値をもとに再現性の検証を行った. シミュレー ション条件と実績値の条件は表 4、結果を図 4 に示す. **1-6** 人目までの値は、実績 $\pm \sigma$ に収まっているものの、 標準偏差が実績値に比べ小さな値をとった.これは, モデル上で旅客同士が固まって動かなくなる現象を改 良したために、速度の分散が小さくなったためと考え られる. 次に 7-8 人目の実績値が急激に減った後で標 準偏差が増加する点は、最初の 6 人が乗車するとドア 付近に一時的に旅客が溜まることで 7 人目以降の旅客 が乗車しづらくなることが映像データと確認してわか った. その後の標準偏差の増加については, 8人目以降 続けて乗る人と少し時間をおいて出発前に急いで乗る 人が存在したため、差が生じたと考えられる.

現状のモデルでは、再現性が高いとは言い難いが、 実績値から大幅に離れていないこと, 実績データの傾 向が掴めたことから今後の改善によって再現性の向上 が期待できる.

6. まとめ

本研究の結果から、旅客属性が乗降に影響を与える

再乗車の改良 表 3 旅客属性

属性	区分	サンプル数(人)	割合 (%)
全サンプル		501	100.0%
性別	男性	359	71.7%
وركتا	女性	142	28.3%
年齢	子供	39	7.8%
—————————————————————————————————————	大人	453	90.4%
ながら乗車	通常乗車	465	92.8%
ながり未手	携帯電話	23	4.6%

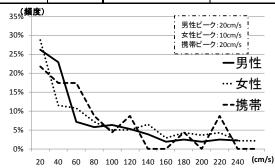


図3 旅客属性別頻度分布

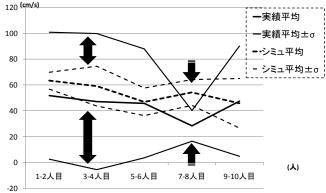


図4 実績値とシミュレーション結果比較 表 4 実績、シミュレーション比較条件

条件	サンプル数	混雑率(%)	乗車人数(人) 再乗車含む
実績	12	162~190	10~14
シミュ	20	180	9~15

可能性を見いだせた. 今後さらに多くのデータを分析 することで精度向上につながると考えられる.

謝辞:本研究に多くのデータを提供して頂いた,東京急行電鉄株式会 社様に感謝の意を表する.